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Abstract  

BACKGROUND: Determination of H3 K27M mutation in diffuse midline glioma 

(DMG) is key for prognostic assessment and stratifying patient subgroups for 

clinical trials. MRI can noninvasively depict morphological and metabolic 

characteristics of H3 K27M mutant DMG. 

PURPOSE: This study aimed to develop a deep learning (DL) approach to non-

invasively predict H3 K27M mutation in DMG using T2-weighted images.  

STUDY TYPE: Retrospective and prospective. 

POPULATION: For diffuse midline brain gliomas, 341 patients from center-1 

(27±19 years, 184 males), 42 patients from center-2 (33±19 years, 27 males) 

and 35 patients(37±18 years, 24males). For diffuse spinal cord gliomas, 133 

patients from center-1 (30±15 years, 80 males). 

FIELDSTRENGTH/SEQUENCE: 1.5T and 3T, T2-weighted turbo spin echo 

imaging. 

ASSESSMENT: Conventional radiological features were independently 

reviewed by two neuroradiologists. H3 K27M status was determined by 

histopathological examination. The Dice coefficient was used to evaluate 

segmentation performance. Classification performance was evaluated using 

accuracy, sensitivity, specificity and area under the curve (AUC).  

STATISTICAL TESTS: Pearson’s Chi-squared test, Fisher's exact test, two-

sample Student’s t-test and Mann-Whitney U test. A two-sided P value < 0.05 

was considered statistically significant. 
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RESULTS: In the testing cohort, Dice coefficients of tumor segmentation using 

DL were 0.87 for diffuse midline brain and 0.81 for spinal cord gliomas. In the 

internal prospective testing dataset, the predictive accuracies, sensitivities and 

specificities of H3 K27M mutation status were 92.1%, 98.2%, 82.9% in diffuse 

midline brain gliomas and 85.4%, 88.9%, 82.6% in spinal cord gliomas. 

Furthermore, this study showed that the performance generalizes to external 

institutions, with predictive accuracies of 85.7%-90.5%, sensitivities of 90.9%-

96.0% and specificities of 82.4%-83.3%.  

DATA CONCLUSION: In this study, an automatic DL framework was developed 

and validated for accurately predicting H3 K27M mutation using T2-weighted 

images, which could contribute to the noninvasive determination of H3 K27M 

status for clinical decision-making. 

Evidence Level: 2 

Technical Efficacy: Stage 2 

Keywords: Diffuse midline glioma; H3 K27M mutation; Magnetic resonance 

imaging; Deep learning. 
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Introduction 

Diffuse midline gliomas (DMGs) are a heterogeneous group of tumors involving 

the corpus callosum, thalamus, brainstem and spinal cord in both children and 

adults1-5. Genetic characterization identifies DMG patients with an unfavorable 

prognosis in those harboring a methionine mutation in histone H3 at lysine 27 

(H3 K27M)1,6-8. Accurate identification of H3 K27M status contributes to 

diagnostic accuracy, prognostic assessment, stratification for clinical trials, and 

potential identification of individuals for targeted therapy (e.g. GD2-directed 

chimeric antigen receptor T cell therapy for H3 K27M-mutant diffuse intrinsic 

pontine gliomas and spinal cord DMGs)1,7,9-11. 

 

Currently, identification of H3 K27M-mutant status requires biopsy or surgery, 

which is time-consuming, expensive, and carries a risk of complications7,12. MRI 

provides a wealth of data to noninvasively depict tumor morphology and  

metabolic characteristics, which are associated with several genetic mutation 

in glioma, such as isocitrate dehydrogenase [IDH]-mutant, 1p/19q co-deletion, 

O6-methylguanine-DNA-methytransferase (MGMT) methylation, and H3 K27M-

mutant13-19. Therefore, accurate noninvasive and cost-effective determination 

of H3 K27M status using routine MRI has the potential to bypass the need for 

invasive biopsy16,20, especially for those patients with contraindications. 

 

Previous studies using conventional machine learning have confirmed the 
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ability of conventional MRI features to predict H3 K27M status of brainstem and 

spinal cord gliomas, with accuracies ranging from 60 to 85%14,20-23. Deep 

learning offers the ability to make this prediction without pre-engineered 

features, which has been particularly effective for other applications in glioma 

radiogenomics24,25. While a study had attempted to predict H3 K27M status of 

brainstem glioma, it was limited by a very small sample size (n = 55) without an 

external testing set or consideration of other locations of DMGs (e.g. thalamus 

or spinal cord), severely limiting the interpretation of the findings26. 

 

Indeed, the clinical translation of H3 K27M mutation prediction by MRI has been 

hampered by several factors, including (1) determination based on a small 

sample size (less than 100 cases), which may result in statistical bias and 

model overfitting; (2) lack of prospective and external validation sets, which may 

overestimate the generalizability of the predictive models; and (3) lack of an 

automatic pipeline from tumor segmentation to H3 K27M mutation prediction 

for DMGs (including the thalamus, brainstem, callosum and spinal cord). 

 

This study aimed to establish an automatic DL pipeline, integrating 

segmentation and prediction, to accurately predict the H3 K27M status of DMGs 

(for both diffuse midline brain and spinal cord gliomas) based on a large 

multicenter dataset.   
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Materials and methods 

Study Design And Participants 

This study was in accordance with the Declaration of Helsinki and approved by 

the Animal and Human Ethics Committee of Beijing Tiantan Hospital, Capital 

Medical University. The external datasets were acquired upon approval by the 

local ethics committees Written informed consent was confirmed by each 

participant. 

 

This was a multicenter study including retrospective and prospective data. MRI 

images retrospectively acquired during January 2018 and December 2019 (252 

pathologically confirmed diffuse midline brain gliomas and 92 pathologically 

confirmed diffuse spinal cord gliomas) in Beijing Tiantan Hospital (center-1) 

were used to develop a DL framework. For retrospective data, this study had 

other inclusion criteria including (1) available axial T2WI for diffuse midline brain 

gliomas (thalamus, brainstem or callosum involved) or sagittal T2WI for 

intramedullary diffuse spinal cord gliomas; (2) available H3 K27M status; and 

(3) unifocal primary tumors prior to any clinical treatment. No further exclusion 

criteria for retrospective data. A prospectively acquired data of DMG was used 

for internal testing. For prospective data, the inclusion criteria including (1) 

clinically and radiologically suspected primary unifocal DMGs (diffuse midline 

brain or spinal cord gliomas) without any clinical treatment; and (2) patient 

confirmed to have biopsy or surgical resection. The exclusion criteria including 
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(1) pathologically confirmed non-gliomas; or (2) patients have no final biopsy or 

surgical resection. External testing was performed using two datasets from 

West China Hospital of Sichuan University (center-2: 42 diffuse midline brain 

gliomas) and Affiliated Jinling Hospital, Medical School of Nanjing University 

(center-3: 35 diffuse midline brain gliomas) (Table 1, Table 2 and Figure 1).  

 

MR Acquisition  

MR imaging was conducted on 1.5T or 3T MR scanners (including center-1: GE 

Signa HDxt and Discovery MR750, Siemens MAGNETOM Verio and Prisma, 

Philips Ingenia CX; center-2: GE Signa Excite, Siemens MAGNETOM Avanto, 

TrioTim and Skyra, Philips Achieva; center-3: GE Signa Discovery MR750, 

Siemens MAGNETOM TrioTim and Essenza). For diffuse midline brain glioma 

image, axial turbo-spin-echo (TSE) T2W images were acquired with the 

following protocol parameters: repetition time (TR)/echo time (TE) = 1800-

12248 / 48-354 ms; flip angle (FA) = 90-160; slice thickness = 1-6 mm; and 

matrix size = 256-640 × 256-640. The protocol parameters of the sagittal TSE 

T2W images in spinal cord glioma image were as follows: TR/TE = 1000-3060 

/ 48-130 ms; FA = 90-120; slice thickness = 3-5 mm; and matrix size= 384-

640 × 384-640 (eTable 1 and eFigure 1).  

 

MRI Assessment  

According to Visually Accessible REMBRANDT Images (VASARI) features and 
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the previous assessments of spinal cord glioma27,28, conventional MRI features, 

including tumor location, edema, cystic/necrosis, hydrocephalus (diffuse 

midline brain gliomas), cavity (diffuse spinal cord gliomas) and contrast 

enhancement, were assessed independently by two neuroradiologists (Y. D, 14 

years of experience in neuroradiology; M. W, 7 years of experience in 

neuroradiology), who were blinded to the genetic status (inter-rater agreement 

showed in eTable 2). This study presented and used conventional MRI features 

by Y. D.  

 

Image Preprocessing 

For brain images, this study used the following process29. T2W images were 

firstly skull-striped using ‘BET’ tool from FSL 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Then the skull-striped T2W images were 

subjected to N4 bias correction using ANTs package 

(http://stnava.github.io/ANTs/). Then, the T2W images were cropped into the 

size of non-zero signal area. Finally, the signal intensities of each image were 

normalized by subtracting the mean and dividing by the image standard 

deviation. For spinal cord images, this study used the method reported in our 

previous study30. T2W images were cropped into the size of non-zero signal 

area and the signal intensities of each image were normalized by subtracting 

the mean and dividing the standard deviation. 

 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://stnava.github.io/ANTs/
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DL Network for Tumor Segmentation 

For DL tumor segmentation, the whole tumor region of the 252 diffuse midline 

brain gliomas and 92 diffuse spinal cord gliomas in the development dataset 

which were manually delineated by two neuroradiologists (L. Q and T. S, both 

with 4 years of experience in neuroradiology) independently using 3D Slicer 

(https://www.slicer.org/) and confirmed by Y. D, were used to train, validate, and 

test DL segmentation networks. For the diffuse midline brain tumor 

segmentation network, 151 tumors were used for training, 51 tumors for 

validation, and 50 tumors for testing. For the diffuse spinal cord tumor 

segmentation network, 55 tumors were used for training, 18 tumors for 

validation, and 19 tumors for testing. In both cases, separation of the training, 

validation, and testing sets was performed on the patient level. A 3D nnU-Net, 

was trained for tumor segmentation31. The DL tumor segmentation network 

architecture of nnU-Net is displayed in Figure 2 and eDocument 1. The Dice 

coefficient was used to evaluate segmentation performance.  

 

 

DL Model for H3 K27M Mutation Prediction 

For H3 K27M status prediction, two separate classification networks were 

developed for diffuse midline brain and spinal cord gliomas (Figure 1C). For 

diffuse midline brain gliomas, the prediction of H3 K27M mutation was based 

on the EfficientNet-B0 architecture, which is a network with parameter efficiency 



 10 / 58 

 

 

 

while maintaining high predictive performance (Figure 2)32. For diffuse spinal 

cord gliomas, this study adopted a network with a simple architecture (Figure 

2 and eDocument 2). To improve model robustness, the outputs of five DL 

networks derived from 5-fold cross-validation on the development dataset 

(retrospective dataset in center-1) were combined with the predictive output 

being determined with majority voting [≥3/5], Figure 1C and eFigure 2). 

Additionally, the averaged predictive probability of five models followed by 

binarization was calculated for a comparison (eTable 3). Once the model was 

finalized, classification accuracy, sensitivity, specificity, and area under the 

receiver operator characteristic curve were used to evaluate predictive model 

performance on the independent internal and external testing datasets. 

 

Ground Truth 

H3 K27M status was determined by histopathological examination of biopsy or 

surgical samples, on which immunohistochemistry using H3 K27M mutation-

specific antibody (1:500 dilution, Merck Millipore, Billerica, MA, USA) was 

performed.  

 

Model Explanation 

For a better understanding of the image features contributing to H3 K27M status 

prediction, Gradient-weighted Class Activation Mapping (Grad-CAM) was 

calculated and assessed independently by two neuroradiologists (L. Q and T. 
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S). Additionally, this study conducted sensitivity analysis for further 

interpretation of the model performance, including: (1) sub-group analyses of 

pediatric and adult cases were conducted to determinate whether the models 

perform differently in pediatric and adult patients, since evidences showed 

pediatric and adult DMGs have different pathogenies and prognosis33,34; (2) 

sub-group analysis on DMGs located in (a) corpus callosum, and (b) thalamus 

and brainstem separately, were conducted to determine a potential bias caused 

by tumor locations; (3) multiparametric MR analysis using available T2W-FLAIR 

and contrast-enhanced T1W images combined with T2W images to determine 

whether multiparametric MR modalities could improve the H3 K27M mutation 

predictive performance compared to those using only T2W images.  

 

Statistical Analysis 

SPSS (version 22, IBM, USA), MATLAB (version 2019a, MathWorks, USA), 

and Python (version 3.6) were used for statistical analyses. Categorical 

variables are displayed by ratios and tested using Pearson’s Chi-squared test 

or Fisher's exact test. Continuous variables are displayed as the mean and 

standard deviation (SD) and tested using a two-sample Student’s t-test if 

variable was normally distributed or Mann-Whitney U test if variable was not 

normally distributed. A two-sided P<0.05 was considered significant.  

For comparison, conventional machine learning techniques were applied to 

explore the predictive ability of a combination of demographic (age, sex) and 
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manually radiologist-derived MRI features (tumor location, edema, 

cystic/necrosis, enhancement, hydrocephalus, cavity and whole tumor volume) 

for the H3 K27M mutation with identical development and testing datasets as 

those in DL pipelines. The conventional machine learning methods included 

lasso (least absolute shrinkage and selection operator) regression analysis, 

support vector machine, and multilayer perceptron.   
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Results 

Demographics and clinical and conventional MRI characteristics 

For prospective data, this study initially recruited 135 participants from January 

2020 to September 2020. Five patients were excluded due to non-gliomas (n=3) 

or withdrawing clinical surgery (n=2). Finally, 130 patients were remained for 

internal testing in center-1 (Table 1 and 2, Figure 1).  

 

A total of 474 DMGs, including retrospective data (252 diffuse midline brain 

gliomas and 92 diffuse spinal cord gliomas) and prospective data (89 diffuse 

midline brain gliomas and 41 diffuse spinal cord gliomas) in center-1, were 

included in this study. Two external datasets, including 42 diffuse midline brain 

gliomas in center-2 and 35 diffuse midline brain gliomas in center-3, were also 

included. In center-1, the patients with H3 K27M-mutant diffuse midline brain 

gliomas were younger than those with wild-type gliomas (aged 22±17 vs 40±17 

years). Mutated tumors were predominately located in the thalamus (72/238 

[30%] vs 16/103 [16%]) and brainstem (154/238 [65%] vs 21/103 [20%]) 

compared to wild-type cases. Lower frequencies of edema (47/238 [20%] vs 

54/103 [52%]) and cystic/necrosis (122/238 [51%] vs 72/103 [70%]) and smaller 

whole tumor volumes (33±32 vs 75±67 ml) were observed in H3 K27M-mutant 

brain gliomas than in wild-type brain gliomas. Similar findings were also 

observed in center-2 and center-3. For diffuse spinal cord glioma, a lower 

presence ratio of cystic/necrosis (15/59 [25%] vs 45/74 [61%]), cavity (8/59 
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[14%] vs 32/74 [43%]) and enhancement (28/59 [47%] vs 56/74 [76%]) and a 

smaller whole tumor volume (8±5 vs 16±12 ml) were identified in H3 K27M-

mutant cases than in wild-type glioma. Using lasso regression, this study 

confirmed the ability of these features to predict the H3 K27M mutation with 

accuracies ranging from 62.9% to 79.8% in prospective diffuse midline brain 

gliomas and 70.7% (95% CI-62.5% to 78.1%) in prospective diffuse spinal cord 

gliomas by majority voting (≥3/5). Results using other conventional machine 

learning methods were found in eTable 3.  

 

Tumor segmentation using DL 

The Dice coefficients were 0.86 (95% CI-0.81 to 0.91) and 0.83 (95% CI-0.81 

to 0.85) for diffuse midline brain and spinal cord gliomas, respectively, between 

the two expert raters. The Dice coefficients were 0.87 (95% CI-0.82 to 0.91) 

and 0.81 (95% CI-0.78 to 0.84) for diffuse midline brain and spinal cord gliomas, 

respectively, between DL and manual segmentations. No statistically significant 

difference was found between the Dice coefficients of tumor segmentation by 

the two raters and Dice coefficients of the DL and manual segmentations (For 

diffuse midline brain and spinal cord gliomas, the Dice coefficients were 0.86 

vs. 0.87, P=0.782; 0.83 vs 0.81; P=0.172, respectively), demonstrating DL 

performance was within the range of inter-rater variability. 

 

H3 K27M-mutation prediction using DL 
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For diffuse midline brain glioma, in the internal prospective testing dataset 

(center-1), the DL predictive network achieved an accuracy of 92.1% (95% CI-

85.4% to 97.8%), sensitivity of 98.2% (95% CI-94.0% to 100%) and specificity 

of 82.9% (95% CI-69.4% to 94.3%). For external testing dataset 1 (center 2), 

the DL predictive network achieved an accuracy of 90.5% (95% CI-81.0% to 

97.6%), sensitivity of 96.0% (95% CI-86.4% to 100%) and specificity of 82.4% 

(95% CI-62.5% to 100%). For the external testing dataset 2 (center-3), the DL 

predictive network achieved an accuracy of 85.7% (95% CI-74.3% to 97.1%), 

sensitivity of 90.9% (95% CI-84.6% to 100%) and specificity of 83.3% (95% CI-

66.7% to 96.0%) (Table 3). Representative cases are shown in Figure 3. The 

classification performance of DL networks was superior to predictive models 

using demographic, clinical and conventional MRI features with accuracies of 

79.8% (95% CI-76.1% to 84.5%) for center-1, 73.8% (95% CI-66.7% to 81.8%) 

for center-2, and 62.9% (95 CI-53.6% to 71.4%) for center-3. 

 

For diffuse spinal cord gliomas, in the prospective testing dataset (center-1), 

the DL predictive network achieved an accuracy of 85.4% (95% CI-73.2% to 

95.1%), sensitivity of 88.9% (95% CI-72.2% to 100%) and specificity of 82.6% 

(95% CI-65.4% to 96.0%) (Table 3). Representative cases are shown in Figure 

3. The performance of DL networks was higher than predictive models using 

demographic, clinical, and conventional MRI features, which achieved an 

accuracy of 70.7% (95% CI-62.5% to 78.1%) (P=.094). 
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Model explanation  

For diffuse midline brain glioma, the Grad-CAM (Figure 4 and eTable 4) 

showed that the main activation areas were tumor core and peritumoral areas. 

Sub-group analyses (eTable 5) showed that the predictive performance of H3 

K27M diffuse midline brain gliomas were consistent with the main findings 

(accuracies of 85.7%-92.1%) with accuracies of 81.5%-100% in both pediatric 

and adult groups. The model achieved predictive accuracies of 90.0%-100% 

for DMGs located in corpus callosum and 81.8%-93.2% for DGMs located in 

thalamus and brainstem (eTable 5), consistent with the main findings. 

Multiparametric MR images analysis showed that the predictive performances 

(accuracies of 51.7%-81.7%) using a combination of T2W, T2W-FLAIR and 

contrast-enhanced T1W images tended to be inferior to those (accuracies of 

85.7%-92.1%) using only T2W images, indicating limited or deleterious 

contribution of T2W-FLAIR and contrast-enhanced T1W images to the 

determination of H3 K27M-mutant diffuse midline brain gliomas (eTable 6). 

 

For diffuse spinal cord glioma, the Grad-CAM (Figure 4 and eTable 4) showed 

that the main activation areas involved the entire tumor and peritumoral areas. 

Sub-group analyses (eTable 5) showed that the predictive performance of H3 

K27M-mutant diffuse spinal cord gliomas tend to decrease with an accuracy of 

78.6% in pediatric gliomas compared to the main finding (accuracy of 85.4%). 
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Multimodal MR images analysis showed that the predictive performance 

(accuracy of 82.5%) using a combination of T2W and contrast-enhanced T1W 

images was comparable to that (accuracy of 85.4%) using only T2W images 

(eTable 6). 
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Discussion 

This study developed an automatic DL pipeline for H3 K27M status prediction 

in DMGs using multicenter datasets. Among the key findings, this study found 

high segmentation performances of brain and spinal cord tumors for the DL 

model within the range of inter-rater variability. Secondly, this study showed 

high predictive accuracies for mutation status in the internal prospective and 

external testing sets, exceeding the performance of conventional machine 

learning models using demographics and radiologist-derived MR features. 

Importantly, the DL pipeline only utilizes T2W MR imaging, which is acquired 

under standard of care, without the need for advanced MR sequences or other 

modalities. 

 

The investigations of noninvasive radiological findings (radiomics and deep 

learning) to predict H3 K27M status are growing20,21,23,26. The first major 

obstacle is tumor segmentation prior to genotype prediction. A large number of 

deep learning networks have been developed for brain whole tumor 

segmentation with overall good performance (Dice coefficients ranging from 

0.80 to 0.91) using multiple MRI sequences, including T2WI, T1WI, contrast-

enhanced T1WI and T2WI-FLAIR35,36, but few studies have focused specifically 

on diffuse midline brain or spinal cord glioma segmentation due to their relative 

rarity37. In our study, the nnU-Net network, which is a state-of-the-art 

architecture for various segmentation tasks31, was used for diffuse midline brain 
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and spinal cord tumor segmentation. The performance for whole tumor 

segmentation was excellent for diffuse midline brain tumors, comparable to 

inter-rater variability of manual segmentation and previous brain tumor 

segmentations (Dice coefficients ranging from 0.80 to 0.91). The segmentation 

of spinal cord tumors was comparable to a previous segmentation task of spinal 

cord tumors (Dice coefficients ranging from 0.77 to 0.80)37. Accurate tumor 

segmentation contributes to H3 K27M status prediction accuracy, since tumor 

morphology and location were potential predictors for H3 K27M mutation1. 

 

For diffuse midline brain and spinal cord gliomas, two separate DL pipelines 

were combined for H3 K27M mutation prediction. Given that the number of 

patients with H3 K27M-mutant gliomas was significantly larger than that of wild-

type patients (H3 K27M-mutation percentage achieved 69.8% in center-1), this 

study integrated the final output from 5-fold cross-validations derived from the 

development dataset (majority voting [≥3/5] as the final prediction, which was 

comparable to using averaged predictive probability) to improve the network 

robustness. The performance of the H3 K27M status prediction in diffuse 

midline brain gliomas achieved an accuracy of 92.1% in the internal prospective 

testing dataset, and the model performance was maintained within external 

testing datasets (accuracy of 85.7%-90.5%), subgroup analyses in pediatric 

and adult groups (accuracy of 81.5%-100%), and DMGs located in corpus 

callosum, thalamus and brainstem (accuracy of 81.8%-100%), indicating 
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robustness across various sites, scanners, field strength, age groups and tumor 

locations, and demonstrating its generalizability for clinical translation. The 

performance of DL model using multimodal MR images (T2W-FLAIR and 

contrast-enhanced T1W images) was not superior to the current model using 

only T2W images, indicating that the features extracted from T2W image were 

efficient to predicting H3 K27M-mutant DMGs. Based on demographics (e.g. 

age) and conventional MRI features of tumors (e.g. tumor location), an 

accuracy of approximately 70% for predicting H3 K27M status could be reached 

using conventional machine learning algorithms, including lasso regression, 

support vector machine and multilayer perceptron. The DL algorithms had a 15-

20% higher accuracy than the routine machine learning methods and used only 

T2W images. The potential explanation may be that the T2WI information 

extracted by DL can capture the tumor features (e.g. features of tumor core and 

peritumoral areas) and morphology, providing more accurate image 

interpretation for H3 K27M-mutant gliomas than conventional clinical and MRI 

features. 

 

A study has been conducted on the prediction of H3 K27M alterations in diffuse 

spinal cord gliomas, with a prediction accuracy less than 65%22. In the current 

study, an accuracy of 85.4% was reached, similar to that (accuracy of 82.5%) 

using a combination of T2W and contrast-enhanced T1W images, showing a 

tendency toward higher accuracy compared to predictive models using 
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demographics and conventional MRI features with an accuracy of 70.7% 

(P=.094, which is not statistically significant due to the small testing sample size 

[n=41]). The current findings with regard to diffuse spinal cord gliomas are 

promising for rapid and accurate clinical diagnosis and personalized treatment 

intervention but warrant further validation with more samples. 

 

LIMITATIONS 

First, the current molecular predictive task focused on the H3 K27M-mutant 

DMGs. The latest definition of “diffuse midline gliomas, H3 K27-altered” 

involves additional molecular alterations (e.g. EZHIP), which demonstrated 

similar responses to treatment and clinical outcomes as those harboring H3 

K27M mutation38,39. These new molecular subtypes could be considered in 

future studies to transfer and expand the current DL models towards prediction 

of “diffuse midline glioma, H3 K27-altered”. Second, while the utilization of 

multiparametric structural MRI (combination of T2W, T2W-FLAIR and contrast-

enhanced T1W images) did not improve the current model (data not shown), 

other advanced MR sequences (e.g. diffusion imaging and perfusion imaging) 

might contribute to an improvement in H3 K27M status prediction. Additionally, 

heterogeneous MR scan parameters may limit the deep learning algorithm 

accuracy, which should be considered in the future work. Third, even though 

the segmentation and prediction networks performed well in the current study, 

more efforts on the network design (e.g. joining the segmentation and prediction 
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task into one network architecture) could be explored to improve performance 

and efficiency of the models. Last, prospective testing was only performed in 

histopathologically confirmed DMGs in center 1 and the sample size of diffuse 

spinal cord gliomas was relatively small. Future studies could evaluate the 

performance of the established framework in clinical practice by integrating a 

prior differentiation task of determining diffuse midline glioma from other tumors.  
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CONCLUSION 

An automatic DL framework was developed and externally validated for 

accurately segmenting DMGs in both the brain and spinal cord and 

subsequently predicting H3 K27M mutation, which can contribute to the 

noninvasive identification of H3 K27M status to improve patient management. 
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Tables 

Table 1. Demographics and conventional MRI features of diffuse midline brain gliomas. 

 Center-1 Center-2 Center-3 

 
Training, Validation and internal 

prospective testing 

P value Training  P value Validation P value internal prospective testing  P value   
P 

value 

external testing P value 

 

H3 K27M-

mutant 

(n=238) 

Wild-type 

(n=103) 

 
H3 K27M-

mutant (n=169) 

Wild-type 

(n=53) 

 

H3 K27M-

mutant 

(n=15) 

Wild-type 

(n=15) 

 

H3 K27M-

mutant 

(n=54) 

Wild-type 

(n=35) 

 

H3 K27M-

mutant 

(n=25) 

Wild-type 

(n=17) 

 

H3 K27M-

mutant 

(n=11) 

Wild-type 

(n=24) 

 

Demographics                   

Age (mean±SD, year) 22±17 40±17 <0.001 22±17 41±15 <0.001 19±14 36.1±19.3 0.019 22±16 39±19 <0.001 27±18 40±18 0.030 31±15 40±18 0.177 

(Female/Male) 105/133 52/51 0.279 71/98 30/23 0.063 6/9 8/7 0.464 28/26 14/21 0.274 9/16 6/11 0.963 3/8 8/16 >0.999 

Location                   

Corpus callosum(n, %) 12 (5%) 66 (64%) <0.001 5 (3.0%) 31 (58%) <0.001 3 (20%) 9 (60%) 0.025 4 (7.4%) 26 (74%) <0.001 2 (8%) 6 (35%) 0.045 3 (27%) 10 (42%) 0.478 

Thalamus(n, %) 72 (30%) 16 (16%) 0.004 49 (29%) 8 (15%) 0.043 4 (27%) 4 (27%) >0.999 19 (35%) 4 (11%) 0.012 8 (32%) 5 (29%) 0.859 4 (36%) 4 (17%) 0.226 

Brainstem(n, %) 154 (65%) 21 (20%) <0.001 115 (68%) 14 (26%) <0.001 8 (53%) 2 (13%) 0.02 31 (57%) 5 (14%) <0.001 15 (60%) 6 (35%) 0.116 4 (36%) 10 (42%) >0.999 

MRI presentation                   

Edema(n, %) 47 (20%) 54 (52%) <0.001 32 (19%) 26 (49%) <0.001 4 (27%) 7 (47%) 0.256 11 (20%) 21 (60%) <0.001 8 (32%) 10 (59%) 0.085 3 (27%) 12 (50%) 0.281 

Cystic/necrosis(n, %) 122 (51%) 72 (70%) 0.001 83 (49%) 40 (75%) <0.001 9 (60%) 11 (73%) 0.439 30 (56%) 21 (60%) 0.679 13 (52%) 7 (41%) 0.491 7 (64%) 15 (63%) >0.999 

Enhancement(n, %) 151 (63%) 69 (67%) 0.53 110 (65%) 38 (72%) 0.373 9 (60%) 10 (67%) 0.705 32 (59%) 21 (60%) 0.945 14 (56%) 13 (76%) 0.174 7 (64%) 15 (63%) >0.999 

Hydrocephalus(n, %) 66 (28%) 24 (23%) 0.394 45 (27%) 10 (19%) 0.254 4 (27%) 1 (6.7%) 0.33 17 (31%) 13 (37%) 0.581 8 (32%) 1 (6%) 0.060 4 (36%) 3 (13%) 0.171 

Whole tumor volume 

(mean±SD, ml) 

33±32 75±67 <0.001 32±32 63±63 0.033 34±28 65±51 0.067 35±32 97±74 <0.001 32±39 66±81 0.446 20±25 52±42 0.044 

Note: Whole tumor volume was calculated using manual (development dataset) or deep learning (testing datasets) segmentations. n, number; SD, 
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standard deviation. 
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Table 2. Demographics and conventional MRI features of diffuse spinal cord 

gliomas. 

 
Training, Validation and 

internal prospective testing 

P value Training  P value Validation P value internal prospective testing  P value 

 
H3 K27M-

mutant 

(n=59) 

Wild-type 

(n=74) 

 
H3 K27M-

mutant 

(n=37) 

Wild-type 

(n=46) 

 
H3 K27M-

mutant (n=4) 

Wild-type 

(n=5) 

 
H3 K27M-

mutant 

(n=18) 

Wild-type 

(n=23) 

 

Demographics   
 

         

Age 

(mean±SD, 

year) 

32±12 29±16 0.152 32±13 29±16 0.248 42±8 25±10 0.444 30±12 30±18 0.990 

Sex 

(Female/Male) 

30/29 23/51 0.021 17/20 17/29 0.408 2/2 0/5 0.167 11/7 6/17 0.024 

Location             

Cervical (n, %) 17 (29%) 31 (42%) 0.119 13 (35%) 19 (41%) 0.566 1 (25%) 3 (60%) 0.524 3 (17%) 9 (39%) 0.117 

Cervical-

thoracic (n, %) 

9 (15%) 10 (14%) 0.776 6 (16%) 6 (13%) 0.683 1 (25%) 1 (20%) >0.999 2 (11%) 3 (13%) >0.999 

Thoracic (n, %) 22 (37%) 26 (35%) 0.797 12 (32%) 15 (33%) 0.986 1 (25%) 1 (20%) >0.999 9 (50%) 10 (43%) 0.678 

Thoracic-

lumbar (n, %) 

11 (19%) 7 (9%) 0.124 6 (16%) 6 (13%) 0.683 1 (25%) 0 (0%) 0.444 4 (22%) 1 (4.3%) 0.150 

MRI 

presentation 

            

Edema (n, %) 45 (76%) 55 (74%) 0.796 29 (78%) 33 (72%) 0.489 2 (50%) 5 (100%) 0.167 14 (78%) 17 (74%) >0.999 

Cystic/necrosis 

(n, %) 

15 (25%) 45 (61%) <0.001 12 (32%) 27 (59%) 0.017 0 (0%) 5 (100%) 0.008 3 (17%) 13 (57%) 0.009 

Enhancement 

(n, %) 

28 (47%) 56 (76%) <0.001 20 (54%) 36 (78%) 0.019 2 (50%) 4 (80%) 0.524 6 (33%) 16 (70%) 0.021 

Cavity (n, %) 8 (14%) 32 (43%) <0.001 5 (14%) 23 (50%) <0.001 1 (25%) 2 (40%) >0.999 2 (11%) 7 (30%) 0.254 

Whole tumor 

volume 

(mean±SD, ml) 

8±5 16±12 <0.001 9±6 16±12 0.006 6±2 16±11 >0.999 7±5 15±12 0.056 

Note: spinal cord gliomas were only acquired at Center-1. Whole tumor volume was 

calculated using manual (development dataset) or deep learning (testing datasets) 

segmentations. n, number; SD, standard deviation.
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Table 3. The performance of lasso regression models for H3 K27M mutation 

prediction using demographics and conventional MRI features and DL models 

using conventional T2W images by majority voting (3/5). 

  Accuracy (%, 

[95% CI]) 

Sensitivity (%, 

[95% CI]) 

Specificity (%, 

[95% CI]) 

Lasso regression 

using 

demographics 

and conventional 

MRI features 

Diffuse midline brain 

gliomaa 

   

 Center-1 testing dataset 79.8 (76.1-84.5) 79.6 (74.4-85.4) 80.0 (74.1-88.0) 

 Center-2 testing dataset 73.8 (66.7-81.8) 84.0 (77.8-94.4) 58.8 (46.2-72.7) 

 Center-3 testing dataset 62.9 (53.6-71.4) 54.6 (37.5-71.4) 66.7 (57.9-77.8) 

 Diffuse spinal cord 

gliomab 

   

 Center-1 testing dataset 70.7 (62.5-78.1) 83.3 (76.9-92.9) 60.9 (50.0-70.6) 

DL using T2WI Diffuse midline brain 

glioma 

   

 Center-1 testing dataset 92.1 (85.4-97.8) 98.2 (94.0-100) 82.9 (69.4-94.3) 

 Center-2 testing dataset 90.5 (81.0-97.6) 96.0 (86.4-100) 82.4 (62.5-100) 

 Center-3 testing dataset 85.7 (74.3-97.1) 90.9 (84.6-100) 83.3 (66.7-96.0) 

 Diffuse spinal cord    
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glioma 

 Center-1 testing dataset 85.4 (73.2-95.1) 88.9 (72.2-100) 82.6 (65.4-96.0) 

Note: CI, confidence interval; DL, deep learning; AUC, area under the curve; Lasso, Least 

absolute shrinkage and selection operator. 

CI calculation used a bootstrap method in testing datasets. 

a The significant contributing features for H3 K27M mutation prediction in diffuse midline 

brain glioma were tumor location at the brainstem and thalamus and younger age; 

b The predominant contributing features for H3 K27M mutation prediction in diffuse spinal 

cord glioma were smaller whole tumor volume and absence of cavity.  
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Figure Legends 

Figure 1. A flow chart of the included patients with diffuse midline glioma for 

(A) tumor segmentation and (B) H3 K27M status prediction. (C) Automatic 

framework integrating two DL pipelines for diffuse midline brain and spinal 

cord gliomas.  
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Figure 2. Automatic framework integrating two deep learning pipelines for 

diffuse midline brain and spinal cord gliomas based on nnU-Net, Efficient-B0 

and an architecture of simple three layers networks. 

 

Figure 3. Representative cases of segmentation and H3 K27M status 

prediction in diffuse midline gliomas using an established deep learning 
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framework. (A) Representative correct prediction cases. Case 1: a female adult 

patient (aged 50 yrs) with H3 K27M-mutant diffuse midline brain glioma located 

in the thalamus; Case 2: a male pediatric patient (aged 5 years) with wild-type 

diffuse midline brain glioma located in the thalamus; Case 3: a female pediatric 

patient (aged 4 yrs) with H3 K27M-mutant diffuse midline brain glioma located 

in the brainstem; Case 4: a female pediatric patient (aged 3 years) with wild-

type diffuse midline brain glioma located in the brainstem; Case 5: a male adult 

patient (aged 39 yrs) with H3 K27M-mutant diffuse spinal cord glioma located 

in the cervical cord; Case 6: a male adult patient (aged 54 yrs) with wild-type 

diffuse spinal cord glioma located in the cervical cord; Case 7: a male pediatric 

patient (aged 12 yrs) with H3 K27M-mutant diffuse spinal cord glioma located 

in the thoracic cord; Case 8: a female adult patient (aged 25 yrs) with diffuse 

spinal cord glioma located in the thoracic cord. (B) Representative incorrect 

prediction cases. Case 9: a male pediatric patient (aged 14 yrs) with wild-type 

diffuse midline brain glioma located in the brainstem (DL: mutant); Case 10: a 

female adult patient (aged 29 yrs) with H3 K27M-mutant diffuse spinal cord 

glioma located in the cervical cord (DL: wild-type). The yellow contour indicates 

tumor segmentation using nnU-Net. F, female; M, male; IHC, 

immunohistochemistry; DL, deep learning; Seg, segmentation; yrs, years. 
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Figure 4. Gradient-weighted Class Activation Mapping (Grad-CAM) of the 

representative cases for H3 K27M status prediction.  
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Supplementary materials 

eTables 

eTable 1. MR imaging acquisition parameter 

Axial T2W 

images 

center-1 center-2 center-3  
Sagittal T2W 

images 

center-1 

 GE Siemens Philips GE Siemens Philips GE Siemens  GE Siemens Philips 

 HDxt 

Discovery 

MR750 

Verio Prisma 

Ingenia 

CX 

Excite  Avanto TrioTim Skyra Achieva 

Discovery 

MR750 

TrioTim Essenza  HDxt 

Discovery 

MR750 

Verio Prisma 

Ingenia 

CX 

TR 

5160-

6000 

2687-

12248 

1800-

6000 

5020-

5550 

2800-

4600 

4000 4100 

2500-

3000 

4500 

3000-

4000 

2809-5752 4000 

3000-

4000 

TR 

2140-

3060 

1000-

3268 

1800-

3000 

3000 2000 

TE 103-118 89-126 95-99 105-117 87-135 107 93 350-354 105 80-100 108-94 98 87-109 TE 110-122 48-130 94-110 91 110 

FA 90 111-142 120-160 90-150 90 90 150 120 150 90 112-142 120 150 FA 90 111-142 120-160 120 90 

slice thickness  5-6 3-6 3-5 5 5-6 6 5 1 5 6 4-5 5 5 slice thickness  3 3-5 3 3 3 

matrix size 512×512 512×512 

256-

640×256-

640 

320-

448×320-

448 

448-

576×448-

576 

512×512 320×288 512×512 448×378 

560-

640×560-

640 

512×512 512×416 384-336 matrix size 512×512 512×512 640×640 384×384 512×512 

Note: TR, repetition time; TE, echo time; FA; flip angle.  
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eTable 2. Inter-rater agreement by Cohen's Kappa between two radiologists 

 Numbers (%), rater 1 Numbers (%), rater 2 K value 

Diffuse midline brain glioma    

Center-1 testing dataset    

Location    

Corpus callosum 78(23%) 78(23%) 1 

Thalamus 88(26%) 88(26%) 1 

Brainstem 175(51%) 175(51%) 1 

MRI presentation    

Edema 101(30%) 110(32%) 0.90 

Cystic/necrosis 194(57%) 196(57%) 0.94 

Enhancement 220(65%) 236(69%) 0.87 

Hydrocephalus 90(26%) 92(27%) 0.97 

Center-2 testing dataset    

Location    

Corpus callosum 8(19%) 8(19%) 1 

Thalamus 13(31%) 13(31%) 1 

Brainstem 21(50%) 21(50%) 1 

MRI presentation    

Edema 18(43%) 17(40%) 0.85 

Cystic/necrosis 20(48%) 21(50%) 0.86 

Enhancement 27(64%) 26(62%) 0.74 

Hydrocephalus 9(21%) 9(21%) 1 

Center-3 testing dataset     

Location    

Corpus callosum 13(37%) 13(37%) 1 

Thalamus 8(23%) 8(23%) 1 

Brainstem 14(40%) 14(40%) 1 

MRI presentation    

Edema 15(43%) 11(31%) 0.76 

Cystic/necrosis 22(63%) 18(51%) 0.77 

Enhancement 22(63%) 24(69%) 0.87 

Hydrocephalus 7(20%) 7(20%) 1 

Diffuse spinal cord glioma    

Center-1 testing dataset    

Location    

Cervical  48(36%) 48(36%) 1 

Cervical-thoracic  19(14%) 19(14%) 1 

Thoracic  48(36%) 48(36%) 1 

Thoracic-lumbar  18(14%) 18(14%) 1 

MRI presentation    

Edema  100(75%) 93(70%) 0.87 
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Cystic/necrosis  60(45%) 51(38%) 0.86 

Enhancement  84(63%) 89(67%) 0.92 

Cavity  40(30%) 40(30%) 1 

Note: n, number. 
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eTable 3. The prediction of H3 K27M-mutation in diffuse midline gliomas using 

conventional T2W images by the ensembled predictive outcomes of five DL 

networks, and performances of conventional machine learning algorithms for H3 

K27M-mutation prediction using demographics and conventional MRI features 

  Accuracy (%, 

[95% CI]) 

Sensitivity (%, 

[95% CI]) 

Specificity (%, 

[95% CI]) 

AUC (95% CI) 

DL using T2W image  Averaged predictive 

probability  

    

 Diffuse midline brain 

glioma 

    

 Center-1 testing 

dataset 

92.1 (86.5-96.6) 96.3 (90.4-100) 85.7 (72.7-96.8) 0.97 (0.93-1.00) 

 Center-2 testing 

dataset 

83.3 (71.4-92.9) 96.0 (87.0-100) 64.7 (40.0-87.5) 0.91 (0.78-1.00) 

 Center-3 testing 

dataset  

74.3 (60.0-88.6) 81.8 (57.1-100) 70.8 (52.2-88.0) 0.85 (0.78-0.98) 

 Diffuse spinal cord 

glioma 

    

 Center-1 testing 

dataset 

85.4 (73.2-95.1) 88.9 (72.2-100) 82.6 (65.2-96.0) 0.83 (0.68,0.96) 

Lasso regression using 

demographics and 

conventional MRI features 

Averaged predictive 

probability 

    

 Diffuse midline brain 

glioma 

    

 Center-1 testing 

dataset 

82.0 (78.9-85.9) 83.3 (78.6-88.6) 80.0 (74.1-88.0) 0.86 (0.82-0.91) 

 Center-2 testing 

dataset 

76.2 (69.7-81.8) 92.0 (88.9-100) 52.9 (38.5-66.7) 0.72 (0.63-0.82) 

 Center-3 testing 

dataset  

62.9 (53.6-71.4) 63.6 (50.0-77.8) 62.5 (52.6-72.2) 0.65 (0.56-0.72) 

 Diffuse spinal cord 

glioma 

    

 Center-1 testing 

dataset 

70.7 (62.5-78.1) 83.3 (76.9-92.9) 60.9 (50.0-70.6) 0.83 (0.77-0.91) 

Support vector machine 

(linear kernel) using 

demographics and 

conventional MRI features 

Majority voting (3/5)     

 Diffuse midline brain 

glioma 

    

 Center-1 testing 

dataset 

82.0 (78.9-85.9) 83.3 (78.6-88.4) 80.0 (74.1-88.0) NA 
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 Center-2 testing 

dataset 

73.8 (66.7-81.8) 84.0 (77.8-94.1) 58.8 (46.2-72.7) NA 

 Center-3 testing 

dataset  

62.9 (53.6-71.4) 54.6 (37.5-71.4) 66.7 (57.9-77.8) NA 

 Diffuse spinal cord 

glioma 

    

 Center-1 testing 

dataset 

78.1 (71.9-84.4) 83.3 (76.9-92.9) 73.9 (64.7-83.3) NA 

 Averaged predictive 

probability 

    

 Diffuse midline brain 

glioma 

    

 Center-1 testing 

dataset 

85.4 (81.7-88.7) 92.6 (90.0-95.6) 74.3 (67.9-82.8) 0.86 (0.81-0.91) 

 Center-2 testing 

dataset 

69.1 (60.6-75.8) 92.0 (88.9-100) 35.3 (23.1-46.2) 0.73 (0.63-0.82) 

 Center-3 testing 

dataset  

51.4 (42.9-60.1) 72.7 (57.1-88.9) 41.7 (31.6-52.6) 0.64 (0.55-0.74) 

 Diffuse spinal cord 

glioma 

    

 Center-1 testing 

dataset 

70.7 (62.5-78.1) 77.8 (69.2-87.5) 65.2 (55.6-75.0) 0.81 (0.74-0.88) 

Support vector machine 

(Gaussian kernel) using 

demographics and 

conventional MRI features 

Majority voting (3/5)     

 Diffuse midline brain 

glioma 

    

 Center-1 testing 

dataset 

79.8 (76.1-84.5) 79.6 (74.4-85.0) 80.0 (74.1-88.0) NA 

 Center-2 testing 

dataset 

66.7 (60.6-72.7) 80.0 (72.2-89.5) 47.1 (33.3-60.0) NA 

 Center-3 testing 

dataset  

57.1 (50.0-64.3) 54.6 (37.5-71.4) 58.3 (47.4-68.4) NA 

 Diffuse spinal cord 

glioma 

    

 Center-1 testing 

dataset 

65.9 (59.4-71.9) 88.9 (83.3-100) 47.8 (36.8-58.8) NA 

 Averaged predictive 

probability 

    

 Diffuse midline brain 

glioma 

    

 Center-1 testing 

dataset 

84.3 (80.3-88.7) 74.3 (67.9-82.8) 90.7 (87.8-95.2) 0.86 (0.81-0.91) 
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 Center-2 testing 

dataset 

69.1 (60.6-75.7) 92.0 (88.9-100) 35.3 (23.1-46.2) 0.75 (0.67-0.84) 

 Center-3 testing 

dataset  

51.4 (42.9-60.1) 72.7 (57.1-88.9) 41.7 (31.6-52.6) 0.66 (0.56-0.76) 

 Diffuse spinal cord 

glioma 

    

 Center-1 testing 

dataset 

80.5 (75.0-87.5) 83.3 (76.9-92.9) 78.3 (70.6-88.2) 0.82 (0.76-0.90) 

Multilayer perceptron 

using demographics and 

conventional MRI features 

Majority voting (3/5)     

 Diffuse midline brain 

glioma 

    

 Center-1 testing 

dataset 

77.5 (73.2-81.7) 75.9 (70.5-81.8) 80.0 (74.1-88.0) NA 

 Center-2 testing 

dataset 

69.1 (60.6-75.8) 72.0 (63.2-83.3) 64.7 (53.9-76.9) NA 

 Center-3 testing 

dataset  

51.4 (42.9-60.7) 36.4 (22.2-50.0) 58.3 (50.0-68.4) NA 

 Diffuse spinal cord 

glioma 

    

 Center-1 testing 

dataset 

65.9 (59.4-71.9) 83.3 (76.9-92.9) 52.2 (41.2-63.2) NA 

 Averaged predictive 

probability 

    

 Diffuse midline brain 

glioma 

    

 Center-1 testing 

dataset 

83.2 (78.9-87.3) 74.3 (67.9-82.8) 88.9 (85.4-93.0) 0.87 (0.83-0.91) 

 Center-2 testing 

dataset 

69.1 (60.6-75.8) 92.0 (88.9-100) 35.3 (23.1-46.2) 0.74 (0.65-0.82) 

 Center-3 testing 

dataset  

57.1 (50.0-64.3) 72.7 (57.1-88.9) 50.0 (40.0-61.1) 0.61 (0.51-0.70) 

 Diffuse spinal cord 

glioma 

    

 Center-1 testing 

dataset 

65.9 (59.4-71.9) 88.9 (83.3-100) 47.8 (35.3-58.8) 0.82 (0.76-0.91) 

Note: AUC, area under the curve; CI, confidence interval; DL, deep learning; NA, not 

available.   
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eTable 4. Results from survey-based assessment of Grad-CAM 

Assessment target  Survey question Numbers (%), rater 1 Numbers (%), rater 2 K value 

Diffuse midline brain 

glioma 

Which one is the main 

activation area in the 

brain  

   

 1.tumor 151 (90.96) 145 (87.35) 0.29 

 2.Nontumor brain tissue  15 (9.04) 21 (12.65)  

 Which one is the main 

activation area within the 

tumor  

   

 1.Tumor margin/periphery 78 (46.99) 73 (43.98) 0.85 

 2.Central area of the tumor 55 (33.13) 57 (34.34)  

 3.Entire tumor area 33 (19.88) 36 (21.69)  

 Which one is the main 

activation area outside of 

tumors  

   

 1.The activation area does 

not include the nontumor 

area at all 

0 (0) 0 (0) 0.40 

 2.Peritumor area along the 

tumor margin  

113 (68.07) 120 (72.29)  

 3.Brain tissue separated 

from the tumor 

53 (31.93) 46 (27.71)  

Diffuse spinal cord 

glioma 

Which one is the main 

activation area in the 

spinal cord  

   

 1.tumor 41 (100) 41 (100) 1 

 2.Nontumor spinal cord 

tissue  

0 0  
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 Which one is the main 

activation area within the 

tumor  

   

 1.Tumor margin/periphery 2 (4.88) 3 (7.32) 0.90 

 2.Central are of the tumor 3 (7.32) 3 (7.32)  

 3.Entire tumor area 36 (87.80) 35 (85.37)  

 Which one is the main 

activation area outside of 

tumors  

   

 1.The activation area does 

not include the nontumor 

area at all 

0 0 1 

 2.Peritumor area along the 

tumor margin  

41 (100) 41 (100)  

 3.Spinal cord tissue 

separated from the tumor 

0 0  

Note: Kappa statistics were calculated in terms of the interrater agreement between rater 

1 (L.Q) and 2 (T.S).   
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eTable 5. The subgroup analyses of predicting H3 K27M-mutation in diffuse midline 

gliomas by majority voting 

 Dataset (number of 

mutant and wildtype 

gliomas)  

Accuracy (%, [95% CI]) Sensitivity (%, [95% 

CI]) 

Specificity (%, [95% 

CI]) 

Pediatric (aged <18 yrs) Diffuse midline brain 

glioma 

   

 Center-1 testing dataset 

(24 vs 9) 

87.9 (75.8-97.0) 100 (100-100) 55.6 (20.0-88.9) 

 Center-2 testing dataset 

(7 vs 2) 

100 (100-100) 100 (100-100) 100 (100-100) 

 Center-3 testing dataset 

(3 vs 5) 

100 (100-100) 100 (100-100) 100 (100-100) 

 Diffuse spinal cord 

glioma 

   

 Center-1 testing dataset 

(6 vs 8) 

78.6 (57.1-100) 83.3 (66.7-100) 75.0 (37.5-100) 

Adult (aged ≥18 yrs) Diffuse midline brain 

glioma 

   

 Center-1 testing dataset 

(30 vs 26) 

94.6 (87.5-100) 96.7 (88.9-100) 92.3 (80.8-100) 

 Center-2 testing dataset 

(18 vs 15) 

87.9 (75.8-97.0) 94.4 (81.8-100) 80.0 (57.1-100) 

 Center-3 testing dataset 

(8 vs 19) 

81.5 (66.7-96.3) 87.5 (57.1-100) 79.0 (58.8-95.2) 

 Diffuse spinal cord 

glioma 

   

 Center-1 testing dataset 

(12 vs 15) 

88.9 (74.1-100) 91.7 (72.7-100) 86.7 (66.7-100) 

DMGs locating in  Center-1 testing dataset 90.0 (76.7-100) 91.7 (72.7-100) 88.9 (72.2-100) 
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corpus callosum (12 vs 18) 

 Center-2 testing dataset 

(2 vs 6) 

100 (100-100) 100 (100-100) 100 (100-100) 

 Center-3 testing dataset 

(3 vs 10) 

92.3 (76.9-100) 100 (100-100) 90.0 (70.0-100) 

DMGs locating in 

thalamus and 

brainstem 

Center-1 testing dataset 

(42 vs 17) 

93.2 (86.4-98.3) 97.6 (92.3-100) 82.4 (61.5-100) 

 Center-2 testing dataset 

(23 vs 11) 

88.2 (76.5-97.1) 95.7 (85.7-100) 72.7 (44.4-100) 

 Center-3 testing dataset 

(8 vs 14) 

81.8 (63.6-95.5) 87.5 (60.0-100) 78.6 (55.6-100) 

Note: yrs, years; CI, confidence interval. CI calculation used a bootstrap method in testing 

datasets. 
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eTable 6. Predicting H3 K27M-mutation in diffuse midline gliomas using 

combination of available T2W-FLAIR and contrast enhanced T1W (cT1W) images 

by majority voting 

 Dataset (number of 

mutant and wild-type 

gliomas)  

Accuracy (%, [95% CI]) Sensitivity (%, [95% 

CI]) 

Specificity (%, [95% 

CI]) 

Diffuse midline brain 

glioma (cases having 

co-existing T2W, T2-

FLAIR and cT1W) 

    

T2W (n=215*) Center-1 testing dataset 

(50 vs 32) 

84.2 (75.6-91.5) 86.0 (75.5-95.2) 81.3 (66.7-93.9) 

 Center-2 testing dataset 

(22 vs 17) 

76.9 (64.1-89.7) 68.2 (47.8-87.0) 88.2 (70.6-100) 

 Center-3 testing dataset 

(9 vs 20) 

79.3 (65.5-93.1) 88.9 (62.5-100) 75.0 (55.0-93.8) 

T2W-FLAIR (n=215*) Center-1 testing dataset 

(50 vs 32) 

82.9 (74.4-90.2) 94.0 (86.5-100) 65.6 (48.7-82.1) 

 Center-2 testing dataset 

(22 vs 17) 

69.2 (53.9-82.1) 63.6 (42.3-84.0) 76.5 (54.6-94.4) 

 Center-3 testing dataset 

(9 vs 20) 

48.3 (31.0-65.5) 77.8 (44.4-100) 35.0 (15.0-56.5) 

cT1W (nr=215*) Center-1 testing dataset 

(50 vs 32) 

81.7 (73.2-89.0) 98.0 (93.5-100) 56.3 (38.5-73.1) 

 Center-2 testing dataset 

(22 vs 17) 

59.0 (43.6-74.4) 72.7 (52.4-90.0) 41.2 (17.7-66.7) 

 Center-3 testing dataset 

(9 vs 20) 

41.4 (24.1-58.6) 88.9 (63.6-100) 20.0 (4.7-38.9) 

T2W+T2W-

FLAIR+cT1W (n=215*) 

Center-1 testing dataset 

(50 vs 32) 

81.7 (73.2-90.2) 92.0 (83.7-98.2) 65.6 (48.4-82.4) 
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 Center-2 testing dataset 

(22 vs 17) 

69.2 (53.9-82.1) 58.8 (33.3-82.4) 77.3 (57.9-94.4) 

 Center-3 testing dataset 

(9 vs 20) 

51.7 (34.5-69.0) 55.6 (20.0-87.5) 50.0 (27.8-71.4) 

Diffuse midline brain 

glioma (model trained 

using maximal 

available cases having 

single modalities) 

    

T2W-FLAIR (n=219*) Center-1 testing dataset 

(50 vs 32) 

85.4 (78.1-92.7) 96.0 (89.6-100) 68.8 (51.9-84.6) 

 Center-2 testing dataset 

(24 vs 17) 

75.6 (61.0-87.8) 91.7 (79.2-100) 52.9 (28.6-76.5) 

 Center-3 testing dataset 

(9 vs 22) 

67.7 (51.6-83.9) 86.4 (70.0-100) 22.2 (0-55.6) 

cT1W (n=244*) Center-1 testing dataset 

(54 vs 35) 

80.9 (71.9-88.8) 90.7 (82.5-98.0) 65.7 (48.8-81.1) 

 Center-2 testing dataset 

(23 vs 17) 

77.5 (65.0-90.0) 82.4 (61.1-100) 73.9 (54.6-90.9) 

 Center-3 testing dataset 

(11 vs 20) 

54.8 (35.5-71.0) 63.6 (33.3-90.9) 50.0 (27.3-72.2) 

Diffuse spinal cord 

glioma (cases having 

co-existing T2W and 

cT1W images) 

    

T2W (n=91*) Center-1 testing dataset 

(17 vs 23) 

85.0 (83.3-88.9) 82.4 (78.6-87.5) 87.0 (84.2-90.9) 

cT1W (n= 91*) Center-1 testing dataset 

(17 vs 23) 

75.0 (72.2-80.6) 82.4 (78.6-87.5) 69.6 (65.0-76.2) 
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T2W+cT1W (n=91*) Center-1 testing dataset 

(17 vs 23) 

82.5 (80.6-86.1) 88.2 (85.7-93.8) 78.3 (73.7-85.0)  

Note: CI, confidence interval. CI calculation used a bootstrap method in testing datasets. 

Results of diffuse midline brain glioma (model trained using maximal available cases 

having multiple modalities) was showed for a comparison to determine whether the sample 

sizes in the train dataset have influence on the H3K27M -mutation prediction using FLAIR 

and cT1W images. T2W-FLAIR were not available for diffuse spinal cord gliomas in Center-

1. *indicates number of cases in training set. 
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eTable 7. The subgroup analyses of predicting H3 K27M-mutation in diffuse midline 

gliomas by different magnetic field intensity.  

 
Dataset (number of mutant 

and wild-type gliomas) 

Accuracy (%, 

[95% CI]) 

Sensitivity (%, 

[95% CI]) 

Specificity (%, 

[95% CI]) 

AUC (95% CI) 

1.5T MRI Diffuse midline brain glioma     

 Center-1 testing dataset (6 vs 1) 100 (100-100) 100 (100-100) 100 (100-100) 1 

 Center-2 testing dataset (3 vs 2) 80.0 (40.0-100) 100 (100-100) 50.0 (0-100) 0.75 (0.50-1) 

 Center-3 testing dataset (0 vs 8) 87.5 (62.5-100) NA 87.5 (62.5-100) NA 

 Diffuse spinal cord glioma     

 Center-1 testing dataset (13 vs 13) 88.5 (73.1-100) 92.3 (73.3-100) 84.6 (60.0-100) 0.88 (0.74-1) 

3.0T MRI Diffuse midline brain glioma     

 Center-1 testing dataset (48 vs 34) 91.5 (85.4-97.6) 95.9 (89.6-100) 84.9 (71.4-96.4) 0.90 (0.83-0.96) 

 Center-2 testing dataset (22 vs 15) 91.9 (81.1-100) 95.5 (84.6-100) 86.7 (66.7-100) 0.91 (0.79-1) 

 Center-3 testing dataset (11 vs 16) 85.2 (70.4-96.3) 90.9 (71.4-100) 81.3 (60.0-100) 0.86 (0.71-0.97) 

 Diffuse spinal cord glioma     

 Center-1 testing dataset (5 vs 10) 80.0 (60.0-100) 80.0 (40.0-100) 80.0 (50.0-100) 0.80 (0.71-0.96) 

Note: CI, confidence interval. 
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eFigure legends 

 

eFigure 1. MRI acquisition details of the T2W images for diffuse midline brain and 

spinal cord gliomas.  

 

eFigure 2. Predictive model performance by majority voting (≥3/5) for each diffuse 

midline glioma patient in testing datasets. 
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eDocument 1: DL Network for Tumor Segmentation  

Network Details 

Two separate networks were trained for brain and spinal cord tumor 

segmentations using 3D nnU-Net. The network architecture of nnU-Net is 

displayed in Figure 2. It follows a 3D U-Net architecture, consisting of an 

encoder and a decoder, which are interconnected by skip connections. The 

nnU-Net approach utilizes large patch sizes with small batch sizes with 

GroupNorm. Input patch sizes of 16×320×320 and 10×416×416 were used for 

brain and spinal cord tumors respectively. The batch size was set to 2. The 

inputs were multi-slice axial (brain tumor) or sagittal (spinal cord tumor) T2W 

images and outputs were multi-slice tumor masks with the same image 

resolution as the input T2W images. 

 

Training Details 

Training objective was the sum of soft Dice and cross-entropy loss, operating 

on the whole tumor. nnU-Net used stochastic gradient descent with an initial 

learning rate of 0.01 and a Nesterov momentum of 0.99. Training ran for a total 

of 200 epochs, where one epoch is defined as the number of training set. The 

learning rate was set to decay with a polynomial schedule. Training patches 

were cropped from randomly selected training cases. Data augmentation was 

applied on the fly during training as those in the original nnU-Net. Segmentation 

networks were trained using PyTorch, ubuntu 18.04 system with 4 GTX1080TI 
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GPUs. 

 

Testing Details 

Fifty diffuse midline brain gliomas and 19 diffuse spinal cord gliomas were used 

to quantitatively test the segmentation networks by Dice coefficient. 
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eDocument 2:DL Model for H3 K27M Mutation Prediction 

Network Details 

For diffuse midline brain gliomas, the prediction of H3 K27M-mutantion was 

based on an EfficientNet-B0 network with two convolutional layers, 17 

MBConv6 layers, one global pool layer and one fully-connected layer (Figure 

2). The T2W images were firstly cropped by selecting five slices including the 

maximum tumor slice and two slices superior to and two slices inferior to the 

maximal tumor mask slice (according to the segmented tumor mask). Then, the 

cropped T2W images (five slices) were resampled into a size of 5×224×224 as 

the input of DL network.  

 

For diffuse spinal cord gliomas, this study adopted a network with a simple 

architecture including three convolutional layers, two max pool layers, one 

global pool layer and one fully-connected layer. Given the morphology and MRI 

acquisition of spinal cord being different from those of brain tumor cases, a 

different data processing and input size was adopted. The T2W image slices of 

spinal cord tumors were not cropped but resized into 512×512. Five T2w image 

slices selected according to the maximal spinal cord tumor slice and its 

corresponding tumor mask slices (providing tumor location information) were 

used, resulting in an image of 10×512×512 as the network input. The output 

was H3 K27M status at the patient-level. 
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Training Details 

Networks were implemented using Pytorch with an adaptive moment estimation 

optimizer (Adam). The initial learning rate was set to 1e-4 with a batch size of 

16 and maximal iterations of 200.   

 

Testing Details 

For the diffuse midline brain gliomas, the prediction network was evaluated 

using an internal prospective independent testing dataset and two external 

testing datasets by classification accuracy, sensitivity, specificity and area under 

the curve (AUC). 

 

For the diffuse spinal cord gliomas, the prediction network was evaluated 

using a prospective independent testing dataset by classification accuracy, 

sensitivity, specificity and AUC. 

 

 

 

 

 

 


